
Available online at www.sciencedirect.com
Journal of Computational Physics 227 (2007) 1162–1175

www.elsevier.com/locate/jcp
Modeling and simulation of Li-ion conduction
in poly(ethylene oxide)

L. Gitelman a, M. Israeli b,z, A. Averbuch c,*, M. Nathan d,
Z. Schuss e, D. Golodnitsky f

a Faculty of Applied Mathematics, Technion, Haifa 32000, Israel
b Faculty of Computer Science, Technion, Haifa 32000, Israel

c School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
d School of Electrical Engineering, Tel Aviv University, Tel Aviv 69978, Israel

e School of Mathematical Sciences, Department of Applied Mathematics, Tel Aviv University, Tel Aviv 69978, Israel
f School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel

Received 8 May 2007; received in revised form 29 August 2007; accepted 31 August 2007
Available online 14 September 2007
Abstract

Polyethylene oxide (PEO) containing a lithium salt (e.g., LiI) serves as a solid polymer electrolyte (SPE) in thin-film
batteries and its ionic conductivity is a key parameter of their performance. We model and simulate Li+ ion conduction
in a single PEO molecule. Our simplified stochastic model of ionic motion is based on an analogy between protein
channels of biological membranes that conduct Na+, K+, and other ions, and the PEO helical chain that conducts
Li+ ions. In contrast with protein channels and salt solutions, the PEO is both the channel and the solvent for the
lithium salt (e.g., LiI). The mobile ions are treated as charged spherical Brownian particles. We simulate Smoluchowski
dynamics in channels with a radius of ca. 0.1 nm and study the effect of stretching and temperature on ion conduc-
tivity. We assume that each helix (molecule) forms a random angle with the axis between these electrodes and the poly-
meric film is composed of many uniformly distributed oriented boxes that include molecules with the same direction.
We further assume that mechanical stretching aligns the molecular structures in each box along the axis of stretching
(intra-box alignment). Our model thus predicts the PEO conductivity as a function of the stretching, the salt concen-
tration and the temperature. The computed enhancement of the ionic conductivity in the stretch direction is in good
agreement with experimental results. The simulation results are also in qualitative agreement with recent theoretical
and experimental results.
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1. Introduction

Lithium and lithium-ion batteries have made substantial and significant gains in the last 30 years, becoming
the dominant rechargeable batteries for consumer portable applications. A lithium-ion battery employs a
metal oxide or sulfide material with typically a layered structure (such as LiCoO2, LiMn2O4, LiNiO2, TiS2,
etc.) as its positive electrode (cathode). The negative electrode (anode) is typically a graphitic carbon. During
discharge, the positive material is reduced and the negative material is oxidized. In this process, lithium ions
are de-intercalated from the anode and intercalated into the cathode material. The charge/discharge voltage
depends on the current and resistance of all battery components.

In most solid-state lithium-ion batteries, a thin-layer (0.02–0.2 mm) solid polymer electrolyte (SPE) is
sandwiched between two electrodes and the ionic conductivity of the SPE medium is of prime importance.
A classical SPE consists of organic macromolecules (usually of a polyether polymer) doped with inorganic
salts. In order to form an effective SPE with mobile cations, a balance must be struck in a cation–polymer
bond so that it is sufficiently strong to promote salt dissociation, but sufficiently weak to permit cation
mobility. Poly(ethylene oxide) (PEO) is a classic example of a lithium ion–host matrix because of a pecu-
liar array in the (–CH2–CH2–O–)n chain that provides the ability to solvate low-lattice-energy lithium
salts. The typical molecular weight of the PEO is 5 · 106, implying �105 O(CH2)2 repeat units per
molecule.

Pure PEO near room temperature contains both amorphous and crystalline microphases, and has an
extended helical structure with seven O(CH2)2 groups in two turns of the helix [1,2]. This long helical chain
is bent many times. The incorporation of salts into the polymer inevitably reduces the freedom of polymer-
chain motion via binding interactions between the ether oxygens and cations. In this case, the anion is disso-
ciated from the cation and does not interact significantly with the chain. Its motion requires a free volume
between the polymer chains [4].

It is well established that cation transport occurs primarily along the helical axis [1,2]. Obviously, this
venue of ionic motion cannot alone account for transporting ions over long distances, because the poly-
mer molecule is extremely entangled and it is sometimes energetically more beneficial for an ion to jump
to another molecule than to continue its motion by a more complicated route. Therefore inter-chain
transport is essential for long-range conduction. It has recently been found [5–8] that intra-chain trans-
port is far more efficient than inter-chain hopping, making the latter process rate- limiting. The inter-
chain ion hopping is assisted by a polymer segmental motion that controls the instantaneous distance
between adjacent chains. The fact that such moves are essential for long-range transport through the
polymer network explains the strong correlations usually observed between ionic conduction and host seg-
mental dynamics in these systems, e.g., the correlation between ionic mobility and the host glass transi-
tion [5].

It has been shown in a series of recent articles [6–8] that stretching films of Li–P(EO) complexes results in a
more than an order of magnitude enhancement of the DC conductivity along the stretch direction.

The following is a detailed summary of some experimental observations related to PEO stretching.
Refs. [6–8] discuss PEO–lithium salt polymer electrolytes LiX:P(EO)n with ethylene oxide-to-salt molar

ratio n (i.e. the variable n indicates that for each Li+ ion there are n atoms of ‘‘O’’ in the PEO polymer
electrolytes) varying from 3 to 100. X represents different anions, such as iodide, triflate, hexafluoroarsenate,
etc. The polymers were cast and hot pressed to be 300 lm-thick films. The length of the neck was 14 mm
and its minimal internal width was 8 mm. The cross-section of the film at the neck was 0.3 · 8 mm2. Films
were stretched by applying a load along the stretching direction. Up to an extension load of 400 N/cm2

along the polymer specimen, neither polymer electrolyte resistance nor visible sample changes were
observed. Under a load of 450–800 N/cm2, the samples began to flow and the DC conductivity increased
by a factor of 2–40, depending on the EO:Li ratio (n) and stretching conditions. After removal of the load,
stretched polymer electrolytes retained high ionic conductivity. In room temperature stretching, the length
of the LiI:P(EO) polymer electrolyte films with n = 20 increased in the stretching direction by a factor of
2.5, whereas the width and the thickness decreased by a factor of 1.5 and 3, respectively. The changes in
the dimensions of the films were much stronger when stretching was carried out at 60 �C. The DC conduc-
tivity in the stretching direction increased by a factor of 5–8 at T = 40 �C and by factor of 11–20 at 60 �C.
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For films subjected to a critical load flowed, the film length increased by a factor of 3–6, whereas its thick-
ness decreased by a factor of about 4.

The profound effect of stretching on the ion transport properties of polymer electrolytes was detected for
different lithium salts, such as lithium iodide, lithium trifluoromethanesulfonate, lithium hexafluoroarsenate,
lithium bis(oxalato)borate and lithium trifluoromethanesulfonimide. In [6] it was found experimentally, that
there are at least three degrees of stretching-induced structural long- and short-range order. SEM, AFM and
XRD tests detected a formation of unidirectionally oriented microphases, with each domain composed of
aligned fibers. Detected changes in Fourier transform infrared spectroscopy were mainly related to the pertur-
bation of the CH2 groups and –O–C–C–O– torsional angles. It was suggested that stretched polymers adopt a
modified helical structure, similar to that of an extended salt-free PEO helix. In [5] the authors presented a
model that accounts for stretching-induced structural anisotropy accompanied by ion conduction enhance-
ment. The authors addressed a transition from spherical to spheroidal shapes of the high conduction regions
as a result of alignment.

This situation is similar to that in protein channels of biological membranes [9–12], where ions diffuse
through a channel that separates two baths of salt solutions of different concentrations. In our case however,
the bath solutions are replaced by a solid anode and cathode and the LiI salt is solvated in the dry polymer.
Continuum models of the motion of ions through protein channels are most commonly based on the assump-
tion of Brownian motion (diffusion) in an electric field, created by the ‘permanent’ charge of the protein, the
charge of the mobile ions, and the voltage applied across the membrane [10,11]. These models are based on the
mean-field assumption and need special assumptions to account for ion–ion interactions, such as finite ionic
size.

The need for coarse-grained mathematical descriptions of ions in PEO/(channels) is apparent. A set of the-
ories is needed to form a hierarchy of models using the following descriptions:

1. Atomic resolution theories are needed for small molecular dynamics (MD)simulations of ions and PEO/
(channel) to capture the essential physics of permeation.

2. Brownian resolution theories are needed for coarser MD or Langevin simulations of ions in PEO.
3. Continuum theories are needed for coarser description of ions in PEO/(channel), involving only a small

number of continuum variables, such as dielectric constants, diffusion coefficients, charge densities, electro-
static potentials and other averaged interaction forces.

The description (1) of ions in PEO/(channels) on the atomic level is derived from classical electrostatics
[18] and mechanics [19]. The collective motion of all atoms and molecules at this level of resolution is
described by a large number of ordinary differential equations coupled to Poisson’s equation for the elec-
trostatic field, as done in MD simulations [12]. The limitation of this description is obvious: there is not
enough computational power available now or in the foreseeable future to keep track of all the relevant
degrees of freedom for sufficiently long times to move an ion from anode to cathode by crossing the
channel.

Descriptions (1) and (2) can be used to describe and model diffusion of interacting particles, however, as
mentioned above, description (3) cannot capture finite size effects for ionic diffusion in confined geometries
in a systematic way. We adopt therefore the Brownian resolution theory (2), which can handle the ion–ion
interactions yet is computationally feasible. In the present setup, the I� and Li+ ions are kept apart from each
other by the polymer and the Li+ ions are kept apart by Coulombic repulsion, so the finite size effects become
significant only at high concentrations. Therefore, we do not incorporate finite size effects in the present sim-
ulation, but we will investigate their effect in a subsequent paper.

In the coarsest Brownian resolution, we approximate the potential of the electric forces by Coulomb’s
potential of all mobile and fixed charges in the model and the applied potential, neglecting induced
surface charges at interfaces. We then compare the simulation results with those of experiments reported
in [6–8].

The paper has the following structure. The model is described in Section 2. A fast algorithm for particle
simulation is given in Section 3. Simulation results and their comparison with experimental results reported
in the literature are described in Section 4.
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2. The model

The simulations and modeling carried out in the present work are focused on the analysis of the conduc-
tivity enhancement induced by orientational distribution of helical segments of the molecular chain (from iso-
tropic to non-isotropic) as a result of PEO stretching.

As noted above, the as-cast PEO under consideration consists of long helical molecule of randomly ori-
ented molecules. In our model, the as-cast PEO configuration is essentially that of a bundle of straight chains
inclined relative to the line perpendicular to electrodes A and K (a single chain bridging the gap) (see Fig. 1).

The angle of inclination a of each helix (molecule) is assumed to be a random variable, uniformly distrib-
uted in the interval 0 6 a 6 p/2.

We assume that for a = 0�, the main Li+ transport mechanism is a process of diffusion and migration inside
the channel. For channels parallel to the electrodes (a = 90�), the main mechanism is inter-channel hopping,
and for intermediate SPE chain geometries (0� < a < 90�) the transport process is a mixture of the two. The
anions diffuse outside the helices, due to the repulsive electrical forces of the permanent charges of the helix.
The diffusive motion of both lithium and iodine ions in the polymer matrix is due to the thermal motion of the
polymer segments and chains.

In a simplified one-dimensional Brownian model, the polymer is represented as a combination of charge
distribution, noise and dissipation. The solenoidal PEO helix, Fig. 2, is replaced [17] with a sequence of
2294 units of CH2–CH2–O, seven units of CH2–CH2–O per two turns of the helix (see Fig. 2). The helix
has a radius R centered on and orthogonal to the x-axis. The length of two turns is d = 1.93 nm. The units
of CH2 are at a distance R = 0.1 nm from the x-axis, and the units of O are at a distance r = 0.04 nm from
the x-axis. Typical charge distribution values are +0.245 for a unit of CH2 and �0.406 for a unit of O [15–17].

The Coulombic potential created on the x-axis by the PEO charges is given by
UðxÞ ¼
XN

j¼1

Xn1

i¼1

qþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xþij Þ

2 þ R2
q þ

Xn2

i¼1

q�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x�ij Þ

2 þ r2

q
0
B@

1
CA; ð2:1Þ
where q� and q+ are the net negative and positive charges on a ring, xþij and x�ij are respectively the coordinates
of the units CH2 and O, and n1 and n2 are respectively the numbers of positive and negative particles, respec-
tively. We assume an external applied potential WE(x). The Coulombic potential of the inter-ionic forces act-
ing on the nth lithium ion at xn is given by
WLiþðx; x; yÞ ¼
X
i6¼n

qLiþ

jx� xij
þ
XLN

i¼1

qI�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Fig. 1. The helix (molecule) and the setup of the physical model.



Fig. 2. Schematic model of poly(ethylene oxide). The same two turns of the helix appear at the bottom of the figure.
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and that for the force acting on the nth iodine ion at yn is
WI�ðy; x; yÞ ¼
XLN

i¼1

qLiþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jy � xij2 þ R2

q þ
X
i6¼n

qI�

jy � yij
þ UðyÞ þWEðyÞ; ð2:3Þ
where x = (x1,x2, . . . ,xLN), y = (y1,y2, . . . ,yLN) are the coordinate vectors of the lithium and iodine ions,
respectively, in configuration space, (i = 1, . . . ,NL). The random motion of the ions in the channel is described
by the overdamped Langevin equations [12,14]
cLi _x ¼ FLiðx; yÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2cLikT

mLi

s
_w;

cI _y ¼ FIðx; yÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffi
2cIkT

mI

s
; _m;

ð2:4Þ
where _w and _m are vectors of independent standard d-correlated Gaussian white noises, and the components of
the electric forces (per unit mass) on the nth lithium and iodine ions, respectively, are given by
F ðnÞLi ðx; yÞ ¼ �qLiþ
oWLiþðx; x; yÞ

ox

����
x¼xn

; ð2:5Þ
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F ðnÞI ðx; yÞ ¼ �qI�
oWI�ðy; x; yÞ

oy

����
y¼yn

: ð2:6Þ
We simulate the system (2.4) by discretizing time and moving the ions according to the Euler scheme
xðt þ DtÞ ¼ xðtÞ þ FLiðxðtÞ; yðtÞÞ
cLi

Dt þ
ffiffiffiffiffiffiffiffiffiffiffiffi
2kT

cLimLi

s
DwðtÞ;

yðt þ DtÞ ¼ yðtÞDt
FIðxðtÞ; yðtÞÞ

cI

Dt þ
ffiffiffiffiffiffiffiffiffi
2kT
cImI

s
DmðtÞ;

ð2:7Þ
where Dw(t) and Dm(t) are zero mean independent Gaussian random variables with covariances IDt (I is the
unit matrix). A Li+ trajectory xi(t) that reaches the graphite anode (on the right in Fig. 1) is instantaneously
restarted at xi = 0 and the counter of restarted trajectories is increased by 1. An I� trajectory that reaches
either the cathode or anode is instantaneously reflected. The total charge Q(t) absorbed in the graphite by time
t produces the noisy battery current
IðtÞ ¼ dQðtÞ
dt

: ð2:8Þ
We simulate 16,058 bound ions in each chain [16]. The interactions between all charges are computed effi-
ciently by a fast multipole method (FMM)-type method [20]. Our aim is to calculate the steady state average
of ÆI(t)æ.

3. A fast algorithm for particle simulations

3.1. Potential computation

We assume that the diffusion of Li+ ions through the channel is one-dimensional along the x-axis. The
potential on the x-axis is given by Eq. (2.1) with n1 = 14 and n2 = 7. A straightforward direct summation
of Eq. (2.1) requires O(N2) operations. We reduce the cost of evaluating these sums at each of the N target
locations from O(N2) to O(N) operations. In order to develop a fast algorithm, we first define the computa-
tional domain (also called ‘‘box’’) to be the smallest section of a helix that contains seven units of CH2–CH2–
O. The origin of our system is the center of the domain (see Fig. 3), which coincides with the fourth particle O.
The potential and the corresponding forces become periodic, U(x + d) = U(x) and Fel(x + d) = Fel(x), where d

is the length of the domain (see Fig. 3). This approximation follows from the periodic structure of the polymer.
We calculate the potential at a large number of points x inside one domain, taking into consideration only the
contribution of several adjacent domains. The dependence of accuracy on the number of domains included in
the computation is investigated below.
The polymer chain is covered by N boxes. Each box contains 21 units of CH2 and O. The origin is in the middle of the central
n. It coincides with the fourth particle O. The potential and the corresponding forces are periodic.
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In order to perform the numerical computation of the potential, the polymer is covered by boxes. Each box
contains 21 units of CH2 and O (see Fig. 3). We assume that the boxes do not intersect each other and that the
helix is infinitely long. The processing of remote areas of the polymer are considered below. The potential and
the corresponding forces become periodic if we consider only an equal number of boxes on both sides of the
central box. Therefore, instead of computing the mutual contributions of all the boxes in each computation,
we only compute the coordinates of the Li+ in the box that contains the origin of the coordinate system. We
call this box a ‘‘central’’ box. We estimate the contribution to the potential and electrostatic forces in the cen-
tral box from the boxes that lie on its left and right. The potential in the central box without the contributions
from adjacent boxes on its left and right sides is denoted by U (can also be considered as U0). The contribution
from the first, second, third, forth boxes from the left and right sides of the central box is denoted by
U1, . . . ,U4, respectively. The same type of notation applies to the electrostatic force F in the central box.

Fig. 4(top) shows the computed potential U (using Eq. (2.1), N = 0) in the central box without the contri-
bution from adjacent boxes and Fig. 4(bottom) shows the contribution from boxes 1, 2, 3 and 4. The differ-
ences between the values of U and the values of U1, U2, U3, U4 are small but have to be considered. The
differences give an indication that a small number of boxes (more than 4 but less than 10) are sufficient to
increase the accuracy.

Fig. 5(top) shows the computed potential U in the central box (in percentage changes) from the contribu-
tion of three neighboring adjacent boxes (N = 1,2,3) and Fig. 5(bottom) shows the effect of adding a fourth
box. The differences between the values of U and the values of U1, U2, U3, U4 are small but the differences have
to be reduced. The relative changes (percentage-wise) in the potential are computed as follows. The potential
in the central box is computed using the influence of the third box on each side. Then, we compute the poten-
tial in the central box using these boxes. We see from Fig. 5(top) that the contribution from the boxes beyond
the third box on either side does not exceed �7%. The contribution from the boxes beyond the fourth box on
either side �3.5% (Fig. 5(bottom)). The full description of the accuracy is given below.

Therefore, in order to obtain higher accuracy it is necessary to take more than four boxes (N P 4) on each
side of the central box. More boxes on each side are needed to increase the accuracy by a factor of 10 when the
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error is reduced to be below 3.5%. The contribution of these additional boxes beyond the fourth box on the
central box is computed by using a Taylor expansion of the potential in Eq. (2.1) in powers of x. Therefore, we
compute
UN ðxÞ ¼
XN

j¼1

X14

i¼1

qþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xþij Þ

2 þ R2
q þ

X7

i¼1

q�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x�ij Þ

2 þ r2

q
0
B@

1
CAþ /ðxÞ; ð3:1Þ
where /(x) represents the correction to the potential generated by charges contained inside remote adjacent
boxes. Contribution from more distant boxes, beginning with the N + 1th box, is represented by their Taylor
approximation, as described below. The error will be reduced from 10�2 to 10�3 range by going from consid-
ering 4 boxes to 10 boxes.

As above, we compute the potential at p points in the central box to find its distribution. The same distri-
bution is valid inside any other box, except for several boundary boxes, because the potential is periodic away
from the boundaries. Then, we compute the coordinate of each Li+ ion by Eq. (2.7). The Li+ ion can be at any
location in the polymer (in any box). If this ion is not located in the central box, we map its coordinates into
the coordinates of the central box, as described below.

At this stage we ignore boundary effects. Therefore, the value of the potential repeats itself when we display
the coordinate by an integer number of box lengths. We take advantage of this periodicity as follows. We per-
form a preliminary computation of UN(x) at p points in the central box which requires O(p) operations. To
compute the potential at a given point x outside of the central box, we map its coordinate into the central

box. In other words, we calculate an equivalent coordinate x0 inside the central box where
x0 = [x(mod)d] � d/2, and d is the length of the central box. The value of the potential at the point x is equal
to the value of the potential at x0, which was computed above. This procedure is obviously inexpensive since it
is done once.

3.2. Computing the forces

The electrostatic force on a Li+ ion at a point x on the axis is given by Eq. (2.5). As for U, a straightforward
direct summation in Eq. (2.5) requires O(N2) operations. We reduce the cost of evaluating these sums at each
of the N target locations from O(N2) to O(N) operations. We calculate the electrostatic force on a Li+ ion,
taking into consideration only the contribution from several adjacent boxes. The accuracy depends on the
number of boxes included in the computation is investigated below.
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The computation of the electrostatic force F is the same as was done for the potential. First, we compute the
electrostatic force in the central box with the contribution from three left and right adjacent boxes (N = 3).
Then, we compute a force F4 on a Li+ ion in the central box with the contribution from the four left and right
adjacent boxes. The differences in the values of the forces are small on this scale. By going from F3 to F4 the
accuracy gets better by a factor of 10 (see Fig. 8). The results are displayed in Fig. 6.

The relative changes of the force expressed in percentages is presented in Fig. 7 where the computation is
done in a similar way to that of the potential above. Specifically, we compute the force in the central box with-
out the contribution from the third left and the third right adjacent boxes. Then, we compute the force in the
central box with the contribution from the third left and the third right adjacent boxes. We find that four
boxes on each side of the central box are insufficient to achieve the required accuracy. Therefore, we consider
the contribution from two additional boxes on each side. The results are displayed in Fig. 7.
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of the molecule before the stretching a. Bottom: after stretching, the mean angle of inclination of the molecule decreases to b < a. The
length of the projection of the molecule on the axis Xold increases by a factor of 3–6, while its thickness decreases by a factor of roughly 4
(the length and the width of the rectangle is shown at the bottom (middle)).
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Another force computation, which uses Eq. (2.6), is presented in Fig. 8. The error between the computa-
tions in the top and bottom parts of Fig. 8 reaches a maximum of 0.015% close to the boundary of the central
box (see Fig. 8(top)).

In conclusion, from all the above computations, we will now base our force computations on the contribu-
tion from four adjacent boxes on each side of the central box with the Taylor expansions of two additional
adjacent boxes. Therefore, Eq. (2.1) will assume N = 4.

4. Simulation results

4.1. Stretching by intra-box inclination of the polymer molecule

In our model (Section 2, Fig. 1), the polymeric film is a thin layer of molecular structures (boxes) that are
oriented at random along an axis (Xnew) where Xnew is perpendicular to the electrodes A and K. In each box,
each helix (molecule) forms a random angle with the Xnew axis. Upon mechanical stretching, the helices align
along the axis of stretching, i.e. the inclination of molecules decreases (see Fig. 9).

When the thickness of the film decreases and the helices are aligned along the stretching direction, the diam-
eter of a single helix does not change.

The number of orientations along a chain molecule is large, so considering each of them individually is
computationally expensive. Therefore, we adopt a statistical approach and calculate appropriate averages over
a distribution of configurations of an ensemble of chain molecules.

In the model, we assume that stretching of the sample is achieved only by decreasing the inclination of a
molecule inside a box. If the mean inclination of the molecule before stretching a1 . 1.2409738
(Fig. 9(left)) drops to a value b1 = arccos(3cosa1) . 0.2387879 so that b1 ¼ arcsinð1

4
sin a1Þ, then the film

length L increases by a factor of 3, while its thickness d decreases by a factor of about 4. If the mean inclina-
tion of the molecule before stretching is a2 . 1.40857 (Fig. 9(right)) decreases to a value b2 =arc-
cos(6cosa2) . 0.249298 so that b2 ¼ arcsinð1

4
sin a2Þ, then L increases by a factor of 6, while d decreases by

the same factor of about 4.
Figs. 10–12 show the results of the simulations compared with experimental results, where Tables 1 and 2

present these results in numeric form. In Fig. 10, the longitudinal conductivity is plotted as function of n, for
various temperature and stretching conditions. Figs. 11 and 12 show the conductivity ratios vs n.
0 10 20 30 40 50 60 70 80 90 10010 7

10 6

10 5

10 4

EO:Li ratio (n)

co
nd

uc
tiv

ity
/o

hm
−1

cm
−1

simul. unstr
simul. unstr 65˚C

simul. str RT
exper. unstr

exper. str RT
exper. unstr 65˚C

Fig. 10. Experimental and simulated longitudinal conductivity for different n. Experimental stretching was carried out at 60 �C. The
longitudinal conductivity was measured after cooling of the stretched film to room temperature.
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Fig. 11. Simulation/experimental conductivity ratios for different n. It shows the effect of stretching on the conductivity. The plots are
conductivity ratio vs n. The films stretched at 60 �C. The longitudinal conductivity was measured after cooling of the stretched film to
room temperature.
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Fig. 12. Simulation/experimental conductivity ratios for different n showing the effect of the temperature for unstretched LiI:P(EO)n.

Table 1
Effect of stretching on the longitudinal conductivity of LiI:P(EO)n solid polymer electrolytes (SPE)

EO:Li ratio (n) Simulation results Experimental results [7,8]

Unstr. r
(S/cm) · 10�6

Str. r
(S/cm) · 10�6

rstr/runstr

ratio
Unstr. r
(S/cm) · 10�6

Str. r
(S/cm) · 10�6

rstr/runstr

ratio

3 92.9 100 1.1
7 1.9 67 35.3 2.6 100 38.0
9 0.25 4.8 19.2 0.4 4.3 12.0

20 0.19 1 5.3 1.0 7.0 7.0
40 0.11 0.51 4.6 1.6 2.9 1.8

100 0.07 0.18 2.6 2.0 4.3 2.2
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Table 2
Effect of temperature on the longitudinal conductivity of unstretched LiI:P(EO)n solid polymer electrolytes (SPE)

EO:Li ratio (n) Simulation results Experimental results [7,8]

r at RT · 10�6 r at T = 65 �C · 10�6 rT/rRT ratio r at RT · 10�6 r at T = 65 �C · 10�6 rT/rRT ratio

3 92.9 94.5 1.0
7 1.9 1.9 1.0 3.5 1.8 0.5
9 0.25 1.5 6.0 0.2 1.2 6.0

20 0.19 0.9 4.7 1.2 4.2 3.5
40 F 0.11 0.7 6.3 1.6 5 3.1

100 0.07 0.5 7.1 2 8 4.0

1174 L. Gitelman et al. / Journal of Computational Physics 227 (2007) 1162–1175
The effect of stretching on the longitudinal conductivity of LiI:P(EO)n solid polymer electrolytes (SPE) is
given in Table 1.

The effect of temperature on the longitudinal conductivity of unstretched LiI:P(EO)n solid polymer electro-
lytes (SPE) is given in Table 2.

5. Discussion and conclusions

5.1. General

We note again the key simplifying assumptions in this model: Brownian dynamics of Li+/I� ions are sim-
ulated in a single molecule. In the present setup, the Li+ and I� ions are kept apart from each other by the
polymer and the Li+ ions are kept apart by Coulombic repulsion, so the finite size effects (e.g., Lennard-Jones
forces) become significant only at high concentrations. Therefore, finite size effects are not incorporated in the
present simulation. The polymeric film is a thin layer of molecular structures oriented at random. Each helix
(molecule) forms a random angle with an axis (see Fig. 1), which is perpendicular to the electrodes. Upon
mechanical stretching, the molecular structures align along the axis of stretching, i.e. the inclination of mol-
ecules decreases (see Fig. 9).

The limitations of our model result from its coarse-grained nature, as well as from the heuristic way in
which we introduced the orientation of a molecule in space. This makes it difficult for a given material to
assign volume fractions and local conductivities to existing phases. For this reason, we cannot hope to account
quantitatively for any observation. Our aim was therefore to check whether the model introduced above can
account for the qualitative observations in a consistent way.

5.2. Stretching effect

The simulation results of Fig. 11 show an excellent agreement in the effect of stretching on the longitudinal
conductivity of PEO between simulation and experimental data over the entire n range. The agreement is not
only in the correct trend (fast increase from n = 3 to n = 9, then an almost equally fast decrease from n = 9 to
n = 20 with a further leveling of the ratios to an almost constant value), but also in the absolute values of the
ratios. This in spite of the fact that the absolute values of the conductivities themselves, as seen in Fig. 10 and
in Tables 1 and 2 match only at low n values. Above n = 9, the simulated vs. experimental longitudinal con-
ductivity values for both RT stretched and unstretched PEO may differ by an order of magnitude and more.
We note that the experimental values exhibit significant spreads [6–8]. In view of the uncertainly in these val-
ues, and the remark on the essentially qualitative nature of our model, the excellent agreement in conductivity
ratios should be considered as indicative of a solid physical standing of the underlying physical model. The
simulations certainly account for the qualitative observations.

5.3. Temperature effect

The agreement in the temperature effect on the PEO longitudinal conductivity shown in Fig. 12 is less
impressive, with the correct trend seen only at low n values (1–20). Given the simplified model used in the
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simulation, obtaining the correct trend as well as absolute ratio value over the entire n range (as in Fig. 11) or
only over a partial n range (as in Fig. 12) is a significant achievement, which again attests to the fact that the
model has solid physical standing.

Other assumptions made in our model remain to be tested by future experiments. Controlled measurements
of the film conduction properties as functions of a properly chosen stretch parameter (angle of inclination) will
be critical in this respect. In this context, it is important to mention again the differences that may exist
between macroscopic and microscopic distortion. Macroscopic distortion always implies a change of shape.
We assumed that such shape change takes place also on the microscopic molecular scale by changing the angle
of inclination of the molecule, but one can envision a later stage of the stretch process in which the macro-
scopic shape changes due to redistribution of already elongated structural units in space, without further
changes in their shape.
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